Search results for "cooperative effects"
showing 3 items of 3 documents
Cooperative phenomena and light-induced bistability in iron(II) spin-crossover compounds
1999
In iron(II) spin-crossover compounds, the transition from the 1A1 low-spin state at low temperatures to the 5T2 high-spin state at elevated temperatures is accompanied by a large increase in metal-ligand bond lengths. The resulting elastic interactions may be pictured as an internal pressure which is proportional to the concentration of the low-spin species. Because pressure stabilises the low-spin state relative to the high-spin state this results in a positive feedback. Thermal transition curves in neat iron(II) spin-crossover compounds are thus invariable much steeper than in diluted mixed crystals, and the high-spin→low-spin relaxation following the light-induced population of the high-…
Cooperative High-Temperature Spin Crossover Accompanied by a Highly Anisotropic Structural Distortion
2016
Spin transitions are a spectacular example of molecular switching that can provoke extreme electronic and structural reorganizations in coordination compounds. A new 3D cyanoheterometallic framework, [Fe(pz)(Au(CN)2)2], has been synthesized in which a highly cooperative spin crossover has been observed at 367 and 349 K in heating and cooling modes, respectively. Mössbauer spectroscopy revealed a complete transition between the diamagnetic and paramagnetic states of the iron centres. The low-spin-to-high-spin transition induced a drastic structural distortion involving a large one-directional expansion (ca. 10.6%) and contraction (ca. 9.6%) of the lattice. Negative thermal expansion along th…
Progression of Diiminopyridines: From Single Application to Catalytic Versatility
2015
Diiminopyridyl metal complexes, first characterized several decades ago, found practical application in 1998 when they were used as precatalysts in coordinative ethylene polymerization. This discovery contributed to the so-called postmetallocene revolution and triggered the large-scale experimental and theoretical research aimed at understanding diversified diiminopyridine chemistry. The results of this quest, some of which were intriguing and difficult to anticipate, are discussed and summarized in the current Review.